Levinson-Durbin Algorithm Used for Fast BCH Decoding
نویسندگان
چکیده
BCH decoding usually involves the evaluation of the error-locator polynomial. This is often achieved with the Berlekamp-Massey algorithm, which requires about O(t) computational steps, where t is the error-correction capability of the BCH code. The evaluation of the errorlocator polynomial may also be computed using fast inversion techniques for Hankel matrices. It will be shown that only O(lt) steps are necessary, with l being the number of errors which actually occurred.
منابع مشابه
Fast Inversion of Hankel Systems and E cient BCH 1 Decoding
| BCH decoding usually involves the evaluation of the error-locator polynomial. This is often achieved with the Berlekamp-Massey algorithm. The evaluation of the error-locator polynomial may also be computed using fast inversion techniques for Hankel matrices. It can be shown that O(lt) steps are necessary, with l being the number of errors which occurred and t being the error-correction capabi...
متن کاملGeneralized Levinson–durbin Sequences and Binomial Coefficients
Abstract The Levinson–Durbin recursion is used to construct the coefficients which define the minimum mean square error predictor of a new observation for a discrete time, second-order stationary stochastic process. As the sample size varies, the coefficients determine what is called a Levinson–Durbin sequence. A generalized Levinson– Durbin sequence is also defined, and we note that binomial c...
متن کاملOn Step-by-Step Complete Decoding Triple-Error-Correcting Binary BCH Codes
The decoding beyond the Bose-Chaudhuri-Hocquenghem (BCH) bound is always an interesting research topic in block error correction codes. However, searching a complete decoding algorithm is not easy since all the error patterns that belong to the coset leaders of the standard array need to be correctable [1]. Both the well-known standard algebraic method and the step-by-step method can be used to...
متن کاملA new procedure for decoding cyclic and BCH codes up to actual minimum distance
In this paper, a new procedure for decoding cyclic and BCH codes up to their actual minimum distance is presented. Previous algebraic decoding procedures for cyclic and BCH codes such as the Peterson decoding procedure and our procedure using nonrecurrent syndrome dependence relations can be regarded as special cases of this new decoding procedure. With the aid of a computer prokram, it has bee...
متن کاملGeneralized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation
For { t y } a discrete time, second-order stationary process, the Levinson-Durbin recursion is used to determine the coefficients , jk α j=1, … , k, of the best linear predictor of 1 + k y , , ˆ 1 1 1 y y y kk k k k α α − − − = + L best in the sense of minimizing the mean square error. The coefficients jk α determine a Levinson-Durbin sequence. A generalized Levinson-Durbin sequence, a special ...
متن کامل